High Performance Algorithms for Toeplitz and block Toeplitz matrices

نویسندگان

  • K. A. Gallivan
  • S. Thirumalai
چکیده

High Performance Algorithms for Toeplitz and block Toeplitz matrices

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NORTH- HOLLAND High Performance Algorithms for Toeplitz and Block Toeplitz Matrices

In this paper, we present several high performance variants of the classical Schur algorithm to factor various Toeplitz matrices. For positive definite block Toeplitz matrices, we show how hyperbolic Householder transformations may be blocked to yield a block Schur algorithm. This algorithm uses BLAS3 primitives and makes efficient use of a memory hierarchy. We present three algorithms for inde...

متن کامل

On Solving Block Toeplitz Systems Using a Block Schur Algorithm

This paper presents a block Schur algorithm to obtain a factorization of a symmetric block Toeplitz matrix. It is inspired by the various block Schur algorithms that have appeared in the literature but which have not considered the innuence of performance tradeoos on implementation choices. We develop a version based on block hyperbolic Householder reeectors by adapting the representation schem...

متن کامل

Kronecker product approximations for dense block Toeplitz-plus-Hankel matrices

In this paper, we consider the approximation of dense block Toeplitz-plus-Hankel matrices by sums of Kronecker products. We present an algorithm for efficiently computing the matrix approximation that requires the factorization of matrices of much smaller dimension than that of the original. The main results are described for block Toeplitz matrices with Toeplitz-plus-Hankel blocks (BTTHB), but...

متن کامل

Toeplitz Block Matrices in Compressed Sensing

Recent work in compressed sensing theory shows that n×N independent and identically distributed (IID) sensing matrices whose entries are drawn independently from certain probability distributions guarantee exact recovery of a sparse signal with high probability even if n N . Motivated by signal processing applications, random filtering with Toeplitz sensing matrices whose elements are drawn fro...

متن کامل

Fast Gaussian Elimination with Partial Pivoting for Matrices with Displacement Structure

Fast 0(n2) implementation of Gaussian elimination with partial pivoting is designed for matrices possessing Cauchy-like displacement structure. We show how Toeplitz-like, Toeplitz-plus-Hankel-like and Vandermondelike matrices can be transformed into Cauchy-like matrices by using Discrete Fourier, Cosine or Sine Transform matrices. In particular this allows us to propose a new fast 0{n2) Toeplit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996